# Seminar on Machine Learning for Optimization 

Introductory Talk

Camille Castera \& Sheheryar Mehmood Mathematical Optimization Group

Saarland University, April 2024


UNIVERSITÄT DES
SAARLANDES

## Learning to Optimize

## Optimization

- The science of minimizing and maximizing quantities.
- Optimization is ubiquitous: Physics, resource management, machine learning, economics,...
- "Everything can be formulated as an optimization problem" but almost none of these problems are solvable.


## Machine Learning

- Using models to learn/extract information "automatically" from data.
- Becomes the "state-of-the-art" approach in many applications.
- Computer assisted: Often requires large amounts of data and important computational resources.

Learning to optimize: Can we use learning as a tool for optimization?

## Optimization

## Optimization

For solving

$$
\min _{x \in \mathbb{R}^{n}} f(x) .
$$

## Iterative Algorithm

$$
x^{(k+1)}=x^{(k)}+d^{(k)}, \quad \text { for } k \geq 0 .
$$

- $x^{(0)}$ is the initial point.
- Run only for $k=0, \ldots, K-1$.
- Use stopping criterion, e.g., stop when $\left\|\nabla f\left(x^{(k)}\right)\right\| \leq \varepsilon$.


## Examples and Computation Cost

$$
x^{(k+1)}=x^{(k)}+d^{(k)}
$$

Gradient Descent with step size $\alpha>0$

$$
x^{(k+1)}=x^{(k)}-\alpha \nabla f\left(x^{(k)}\right), \quad \text { for } k \geq 0
$$

Newton's Method

$$
x^{(k+1)}=x^{(k)}-\nabla^{2} f\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right), \quad \text { for } k \geq 0 .
$$

## Computation Cost

- Per-iteration cost. How expensive is $x^{(k)} \longrightarrow x^{(k+1)}$ ?
- Convergence speed. How big is $K$ ?


## Supervised Learning

## Machine learning (ML)

## Concept

Learn a relation between some input variable $x$ and output variable $y$.

Such relations are too complex, we shall approximate them.

## In ML we use models

Function $\mathcal{M}$ parameterized by
$\theta \in \mathbb{R}^{P}$. Given input $x$, yields

$$
\hat{y}=\mathcal{M}(x, \theta) .
$$

We want $\theta$ such that $\hat{y}$ is "close" to $y$.

## Example: Image classification

Given an image $x$, the output $y$ equals 1 if $x$ contains a dog, and $y$ equals 0 otherwise.


## Neural networks

## A specific class of ML models

Compositional structure in layers $\left(\mathcal{M}_{\ell}\right)_{\ell \in\{1, \ldots, L\}}$ :

$$
\mathcal{M}=\mathcal{M}_{L} \circ \mathcal{M}_{L-1} \circ \ldots \circ \mathcal{M}_{1}
$$

Typical layer: $\mathcal{M}_{1}\left(x, \theta_{1}\right)=g_{1}\left(W_{1} x+b_{1}\right)$, where,

- $W_{1}$ is a matrix, $b_{1}$ a vector,
- $g_{1}$ is an activation function (non-linear).


## Common activation functions



- The parameter $\theta \in \mathbb{R}^{P}$ of $\mathcal{M}$ contains the coefficients of the matrices and vectors of the layers.
- Deep learning: ML with neural networks.


## Training neural networks: an optimization problem

Central question: How to select the parameter $\theta$ ?

## Loss function

- Training dataset: a collection of $N$ examples

$$
\left(x_{n}, y_{n}\right)_{n \in\{1, \ldots, N\}} .
$$

- Loss function: sum of the errors made by $\mathcal{M}$ on the training set, e.g.,

$$
\mathcal{L}(\theta) \stackrel{\text { e.g. }}{=} \frac{1}{N} \sum_{n=1}^{N}\left\|\mathcal{M}\left(x_{n}, \theta\right)-y_{n}\right\|_{2}^{2}
$$

## Training is an optimization problem

We seek $\theta \in \mathbb{R}^{P}$ which minimizes $\mathcal{L}$ :

$$
\min _{\theta \in \mathbb{R}^{P}} \mathcal{L}(\theta) \stackrel{\text { def }}{=} \min _{\theta \in \mathbb{R}^{P}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{n}(\theta)
$$

Learning to Optimize

## Optimizing

Solving

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

using algorithms:

$$
x^{(k+1)}=x^{(k)}+d^{(k)} .
$$

Warning: Training is NOT learning to optimize.

## Training

We have seen that to learn (or train) a model $\mathcal{M}$, we must solve an optimization problem:

$$
\min _{\theta \in \mathbb{R}^{P}} \mathcal{L}(\theta)
$$

## Learning to Optimize

Solving

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

using a model $\mathcal{M}$ :

$$
x^{(k+1)}=x^{(k)}+\mathcal{M}\left(x^{(k)}, \theta\right) .
$$

We want to find a model $\mathcal{M}(\cdot, \theta)$, that is "good" at solving optimization problems. To select the parameter $\theta$ we will additionally need to solve the training problem.

Chain rule and Automatic Differentiation

## Backpropagation

How does a change in $\theta$ affects $f\left(x^{(K)}(\theta)\right)$ ?
We need to compute its derivative w.r.t $\theta$ !
Chain rule:

$$
\nabla_{\theta} f\left(x^{(K)}(\theta)\right)=\left[\nabla_{\theta} x^{(K)}(\theta)\right]\left[\nabla f\left(x^{(K)}(\theta)\right)\right]
$$

## Unrolling:



## To find a good $\theta$, we will need to train $\mathcal{M}(\cdot, \theta)$

- Training dataset: a set of functions and initializations:

$$
\left\{\left(f_{i}, x_{i}^{(0)}\right): 1 \leq i \leq I\right\}
$$

- For each pair $\left(f_{i}, x_{i}^{(0)}\right)$, run the algorithm to obtain $x_{i}^{(K)}(\theta)$ :

$$
\begin{aligned}
& \text { for } k=0, \ldots, K-1 \text { : } \\
& \qquad x_{i}^{(k+1)}(\theta)=x_{i}^{(k)}(\theta)+\mathcal{M}\left(x_{i}^{(k)}(\theta), \theta\right) .
\end{aligned}
$$

- Loss Function: sum of the values of all function $f_{i}$

$$
\mathcal{L}(\theta)=\frac{1}{I} \sum_{i=1}^{I} f_{i}\left(x_{i}^{(K)}(\theta)\right) .
$$

- Compute $\nabla_{\theta} \mathcal{L}(\theta)=\frac{1}{I} \sum_{i=1}^{I} \nabla_{\theta} f_{i}\left(x_{i}^{(K)}(\theta)\right)$ and use it to update $\theta$ :

$$
\theta \leftarrow \theta-\eta \nabla_{\theta} \mathcal{L}(\theta)
$$

# Seminar on Machine Learning for Optimization 

Introductory Talk

Camille Castera \& Sheheryar Mehmood Mathematical Optimization Group

Saarland University, April 2024


UNIVERSITÄT DES
SAARLANDES

