Seminar on Machine Learning for Optimization

Introductory Talk

Camille Castera & Sheheryar Mehmood Mathematical Optimization Group

Saarland University, April 2024

Motivation

Learning to Optimize

Optimization

- The science of **minimizing** and **maximizing** quantities.
- Optimization is ubiquitous: Physics, resource management, machine learning, economics,...
- "Everything can be formulated as an optimization problem" **but** almost none of these problems are solvable.

Machine Learning

- Using models to learn/extract information "automatically" from data.
- Becomes the "state-of-the-art" approach in many applications.
- Computer assisted: Often requires large amounts of data and important computational resources.

Learning to optimize: Can we use learning as a tool for optimization?

Optimization

Optimization

For solving

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})\,.$$

Iterative Algorithm

$$x^{(k+1)} = x^{(k)} + d^{(k)}$$
, for $k \ge 0$.

- $x^{(0)}$ is the initial point.
- Run only for $k = 0, \ldots, K 1$.
- Use stopping criterion, e.g., stop when $\left\|\nabla f(x^{(k)})\right\| \leq \varepsilon$.

Examples and Computation Cost

$$x^{(k+1)} = x^{(k)} + d^{(k)}$$

Gradient Descent with step size $\alpha > 0$

$$x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)}), \quad \text{for } k \ge 0.$$

Newton's Method

$$x^{(k+1)} = x^{(k)} - \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)}) \,, \quad \text{for } k \ge 0 \,.$$

Computation Cost

- Per-iteration cost. How expensive is $x^{(k)} \longrightarrow x^{(k+1)}$?
- Convergence speed. How big is K?

Supervised Learning

Machine learning (ML)

Concept

Learn a relation between some **input** variable x and **output** variable y.

Such relations are too complex, we shall **approximate** them.

In ML we use models

Function \mathcal{M} parameterized by $\theta \in \mathbb{R}^{P}$. Given input x, yields $\hat{y} = \mathcal{M}(x, \theta)$. We want θ such that \hat{y} is "close" to y.

Example: Image classification

Given an image x, the output y equals 1 if x contains a dog, and y equals 0 otherwise.

Neural networks

A specific class of ML models

Compositional structure in *layers* $(\mathcal{M}_{\ell})_{\ell \in \{1,...,L\}}$:

 $\mathcal{M} = \mathcal{M}_L \circ \mathcal{M}_{L-1} \circ \ldots \circ \mathcal{M}_1.$

Typical layer: $\mathcal{M}_1(x, \theta_1) = g_1 \left(W_1 x + b_1 \right)$, where,

 $-W_1$ is a matrix, b_1 a vector,

 $-g_1$ is an activation function (non-linear).

Common activation functions

- The parameter $\theta \in \mathbb{R}^P$ of \mathcal{M} contains the coefficients of the matrices and vectors of the layers. - Deep learning: ML with neural networks. Training neural networks: an optimization problem

Central question: How to select the parameter θ ?

Loss function

- Training dataset: a collection of N examples $(x_n, y_n)_{n \in \{1, \dots, N\}}.$

– Loss function: sum of the errors made by ${\cal M}$ on the training set, e.g.,

$$\mathcal{L}(\boldsymbol{\theta}) \stackrel{\text{e.g.}}{=} \frac{1}{N} \sum_{n=1}^{N} \|\mathcal{M}(x_n, \boldsymbol{\theta}) - y_n\|_2^2.$$

Training is an optimization problem

We seek $\theta \in \mathbb{R}^P$ which minimizes \mathcal{L} : $\min_{\theta \in \mathbb{R}^P} \mathcal{L}(\theta) \stackrel{\text{def}}{=} \min_{\theta \in \mathbb{R}^P} \frac{1}{N} \sum_{n=1}^N \mathcal{L}_n(\theta).$

Learning to Optimize

What is Learning to Optimize?

Optimizing

Solving

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})$$

using algorithms:

$$x^{(k+1)} = x^{(k)} + d^{(k)}.$$

Warning: Training is **NOT** learning to optimize.

Training

We have seen that to learn (or train) a model \mathcal{M} , we must solve an optimization problem:

 $\min_{\boldsymbol{\theta} \in \mathbb{R}^P} \mathcal{L}(\boldsymbol{\theta})$

Learning to Optimize

Solving

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})$$

using a model \mathcal{M} :

$$x^{(k+1)} = x^{(k)} + \mathcal{M}(x^{(k)}, \theta).$$

We want to find a model $\mathcal{M}(\cdot, \theta)$, that is "good" at solving optimization problems. To select the parameter θ we will additionally need to solve the training problem. Chain rule and Automatic Differentiation

Backpropagation

How does a change in θ affects $f(x^{(K)}(\theta))$? We need to compute its derivative w.r.t θ !

Chain rule:

$$\nabla_{\theta} f(x^{(K)}(\theta)) = \left[\nabla_{\theta} x^{(K)}(\theta) \right] \left[\nabla f\left(x^{(K)}(\theta) \right) \right]$$

Unrolling:

To find a good θ , we will need to train $\mathcal{M}(\cdot, \theta)$

• Training dataset: a set of functions and initializations:

 $\{(f_i, \mathbf{x}_i^{(0)}) : 1 \le i \le I\}.$

• For each pair $(f_i, x_i^{(0)})$, run the algorithm to obtain $x_i^{(K)}(\theta)$:

for $k = 0, \ldots, K - 1$: $x_i^{(k+1)}(\theta) = x_i^{(k)}(\theta) + \mathcal{M}(x_i^{(k)}(\theta), \theta).$

• Loss Function: sum of the values of all function f_i

$$\mathcal{L}(\boldsymbol{\theta}) = rac{1}{I} \sum_{i=1}^{I} f_i \left(\boldsymbol{x}_i^{(K)}(\boldsymbol{\theta}) \right) \, .$$

• Compute $\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{I} \sum_{i=1}^{I} \nabla_{\theta} f_i\left(x_i^{(K)}(\theta)\right)$ and use it to update θ : $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta)$

Seminar on Machine Learning for Optimization

Introductory Talk

Camille Castera & Sheheryar Mehmood Mathematical Optimization Group

Saarland University, April 2024

