

School

of **Economics**

Camille Castera[†]*, Jérôme Bolte[‡]*, Cédric Févotte[†]*, Edouard Pauwels[†]§*

+ IRIT, CNRS **‡** Toulouse School of Economics

*Univ. Toulouse, France § DEEL, IRT Saint Exupery

Contributions

- Building a **second-order** method with inertia for training deep networks.
- Physical interpretation of the hyperparameters.
- Proof of convergence in a very general setting.

Objective

Given a deep neural network *f* with parameters θ , a data set $(x_n, y_n)_{n=1...N}$,

Design algorithms to solve

$$\min_{\theta} \mathcal{J}(\theta) = \sum_{n=1}^{N} I(f(x_n, \theta), y_n)$$

Assumption

We focus on losses \mathcal{J} that are **Continuous**, locally Lipschitz, and Tame. Hence, differentiable almost everywhere. Covers most deep learning losses.

From a Differential Equation to the Algorithm

Study the following second-order ODE (with $\alpha \geq 0$, $\beta > 0$),

$$\ddot{\theta}(t) + \alpha \dot{\theta}(t) + \beta \nabla^2 \mathcal{J}(\theta(t)) \dot{\theta}(t) + \nabla \mathcal{J}(\theta(t)) = 0$$

2 Introduce an auxiliary variable to remove the explicit second-order derivatives:

$$\begin{cases} \dot{\theta}(t) + (\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) + \beta\nabla\mathcal{J}(\theta(t)) &= 0\\ \dot{\psi}(t) + (\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) &= 0 \end{cases}$$

3 Discretize with an explicit Euler scheme at a time t_k with a step size $\gamma_k > 0$:

$$\dot{ heta}(t_k) \simeq rac{ heta(t_k) - heta(t_k - \gamma_k)}{\gamma_k}$$

The Algorithm: INNA

$$\begin{cases} \theta_{k+1} = \theta_k + \gamma_k \left(\left(\frac{1}{\beta} - \alpha \right) \theta_k - \frac{1}{\beta} \psi_k - \beta \nabla \mathcal{J}(\theta_k) \right) \\ \psi_{k+1} = \psi_k + \gamma_k \left(\left(\frac{1}{\beta} - \alpha \right) \theta_k - \frac{1}{\beta} \psi_k \right) \end{cases}$$

Mini-batch Subsampling

- 1 At each iteration, only consider a few data chosen randomly.
- 2 Produces a stochastic approximation of the gradient, up to a random noise ξ_k
 - → Overcomed by taking vanishing discretization step sizes γ_k .

Dynamical System Interpretation

$$\underbrace{\ddot{\theta}(t)}_{\text{Inertia}} + \underbrace{\alpha \dot{\theta}(t)}_{\text{Friction}} + \underbrace{\beta \nabla^2 \mathcal{J}(\theta(t)) \dot{\theta}(t)}_{\text{Newtonian effects}} + \underbrace{\nabla \mathcal{J}(\theta(t))}_{\text{Gravity}} = \mathbf{0}$$

Theoretical Guarantees

Theorem: INNA Converges

For any uniformly bounded sequence $(\theta_k, \psi_k)_k$ of INNA,

- Accumulation points $(\bar{\theta}, \bar{\psi})$ are such that $\nabla \mathcal{J}(\bar{\theta}) = \mathbf{0}.$
- The sequence of values $(\mathcal{J}(\theta_k))_{k \in \mathbb{N}}$ converges.

Proof Sketch

- Solutions of the continuous ODE converges to critical points. Control these solutions (Lyapunov Analysis).
- Control the noise ξ_k (vanishing step sizes).
 - → INNA asymptotically behaves like the ODE.

Handling Nondifferentiable Losses

 \mathcal{J} Differentiable J Nondifferentiable Gradient Clarke Subgradient $\partial \mathcal{J}(\theta)$ $\nabla \mathcal{J}(\theta)$ Ordinary Differential Equation Differential Inclusion Chain rule for gradients Chain rule for subgradients $\frac{\partial \mathcal{J}}{\partial t}(\theta(t)) = \langle \nabla \mathcal{J}(\theta(t)), \dot{\theta}(t) \rangle$ $\frac{\partial \mathcal{J}}{\partial t}(\theta(t)) = \langle \mathbf{v_k}, \dot{\theta}(t) \rangle$ $\sum
abla = \sum \sum$ $\sum \partial
eq \partial \sum$ Sum rule No sum rule

Numerical Experiments

Training and test accuracy using *Network in Network* to classify images of the *CIFAR-100* data-set.

References

