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Contributions

¢ Building a second-order method with
inertia for training deep networks.

o Physical interpretation of the
hyperparameters.

* Proof of convergence in a very general
setting.

Objective

Given a deep neural network f with param-

eters 0, a data set (Xn, Yn)n=1..N ,
Design algorithms to solve

N
min J(0) = 2—:1 I(f(Xn,6),Yn)

Assumption

We focus on losses ./ that are Continuous,
locally Lipschitz, and Tame. Hence,
differentiable almost everywhere.
Covers most deep learning losses.

From a Differential Equation
to the Algorithm

o Study the following second-order ODE
(witha > 0, 6 > 0),

A(t) +af(t)+BV2T(0(t)0(t) + VT (6(t))

@ Introduce an auxiliary variable to remove
the explicit second-order derivatives:

0(8)+ (a — 1)0()+ 3p(6)+ VT (6(1))
§(0)+ (0 — 2)0(t) + (1

© Discretize with an explicit Euler scheme at
a time t; with a step size 7y, > O:

é(tk) ~ G(tk) N iitk — ’Yk)

The Algorithm: INNA

Ok+1 =0k +7k ((%—“)
Pk+1 =Prt7k ((%—“)

O

=0

Mini-batch Subsampling

o At each iteration, only consider a few data
chosen randomly.

@Produces a stochastic approximation of the
gradient, up to a random noise ¢

— Overcomed by taking vanishing
discretization step sizes .

Dynamical System Interpretation

. . 5 B
0(t), + ad(t) + V2T (B(0)0(t) + VT (B(t)) = O
Inertia  Friction = Newtonian effects Gravity

o

xa=0.5 B=0.01

.

6

x=13 B=0.1

Theoretical Guarantees

Theorem: INNA Converges Proof Sketch

For any wuniformly bounded sequence e Solutions of the continuous ODE
(Ok, Wi ) of INNA, converges to critical points. Control these

e Accumulation points (6, () are such that solutions (Lyapunov Analysis).

VJ(0) =0. » Control the noise ¢y (vanishing step sizes).

e The sequence of values (7 (k) )ken — INNA asymptotically behaves like the
converges. ODE.

Handling Nondifferentiable Losses

J Difterentiable J Nondifterentiable
Gradient V.J(6) Clarke Subgradient 9.7 (6)
Ordinary Ditferential Equation Ditferential Inclusion
Chain rule for gradients Chain rule for subgradients
() = (VI (6(1)).6(1)) BO() = (vie 6(8))
Sum rule Y V=V) No sum rule Y 0#£0d).

Numerical Experiments
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